Angiotensin II stimulates spinally projecting paraventricular neurons through presynaptic disinhibition.
نویسندگان
چکیده
Paraventricular nucleus (PVN) neurons that project to the spinal cord are important in the control of sympathetic outflow. Angiotensin II (Ang II) can stimulate PVN neurons, but its cellular mechanisms are not clear. In this study, we determined the effect of Ang II on the excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Whole-cell patch-clamp recordings were performed on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Immunocytochemistry labeling revealed that the immunoreactivity of angiotensin type 1 (AT1) receptors was colocalized with a presynaptic marker, synaptophysin, in the PVN. Application of 0.1-5 microm Ang II significantly decreased the amplitude of evoked GABAergic IPSCs in a concentration-dependent manner. Also, Ang II decreased the frequency of miniature IPSCs from 2.56 +/- 0.45 to 1.05 +/- 0.20 Hz (p < 0.05; n = 12), without affecting the amplitude and the decay time constant. The effect of Ang II on miniature IPSCs was blocked by losartan but not PD123319. However, Ang II had no effect on the evoked glutamatergic EPSCs and did not alter the frequency and amplitude of miniature EPSCs at concentrations that attenuated IPSCs. Furthermore, Ang II increased the firing rate of PVN neurons from 3.75 +/- 0.36 to 7.89 +/- 0.85 Hz (p < 0.05; n = 9), and such an effect was abolished by losartan. In addition, Ang II failed to excite PVN neurons in the presence of bicuculline. Thus, this study provides substantial new evidence that Ang II excites spinally projecting PVN neurons by attenuation of GABAergic synaptic inputs through activation of presynaptic AT1 receptors.
منابع مشابه
Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons.
The hypothalamic paraventricular nucleus (PVN) is an important site for the regulation of sympathetic outflow. Angiotensin II (Ang II) can activate AT(1) receptors to stimulate PVN presympathetic neurons through inhibition of GABAergic input. However, little is known about the downstream pathway involved in this presynaptic action of Ang II in the PVN. In this study, using whole cell recording ...
متن کاملNitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release.
Nitric oxide (NO) in the paraventricular nucleus (PVN) is involved in the regulation of the excitability of PVN neurons. However, the effect of NO on the inhibitory GABAergic and excitatory glutamatergic inputs to spinally projecting PVN neurons has not been studied specifically. In the present study, we determined the role of the inhibitory GABAergic and excitatory glutamatergic inputs in the ...
متن کاملFunction and Pharmacology of Spinally-Projecting Sympathetic Pre-Autonomic Neurones in the Paraventricular Nucleus of the Hypothalamus
The paraventricular nucleus (PVN) of the hypothalamus has been described as the "autonomic master controller". It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocell...
متن کاملActivation of spinally projecting and nitrergic neurons in the PVN following heat exposure.
The present study investigated the effect of acute thermal stimulation in conscious rats on the production of Fos, a marker of increased neuronal activity, in spinally projecting and nitrergic neurons in the hypothalamic paraventricular nucleus (PVN). The PVN contains a high concentration of nitrergic neurons, as well as neurons that project to the intermediolateral cell column (IML) of the spi...
متن کاملActivation of delta-opioid receptors excites spinally projecting locus coeruleus neurons through inhibition of GABAergic inputs.
Stimulation of the noradrenergic nucleus locus coeruleus (LC) releases norepinephrine in the spinal cord, which inhibits dorsal horn neurons and produces analgesia. Activation of this descending noradrenergic pathway also contributes to the analgesic action produced by systemic opioids. The delta-opioid receptors are present presynaptically in the LC. However, their functional role in the contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2003